翁祖謙

發布時間:2021-03-23瀏覽次數🎑:889

翁祖謙,正教授
通訊地址 Office Address🤚:學院5號樓403-F

電子郵件 Email🎒:wengzq@shanghaitech.edu.cn

2019.07-迄今 a8体育官网教授

2015.04-2019.06 北京高科學研究a8研究

2010.07-2015.04 Staff Scientist, SSRL, SLAC National Accelerator Laboratory

2006.04-2010.07 Scientist, Exp. Division, European Synchrotron Radiation Facility

2005.01-2006.03 Senior Res. Associate, BioCAT, CSRRI, Illinois Institute of Technology

2004.02-2004.12 Post-doc, Biophysics Res. Division, Univ. of Michigan at Ann Arbor

1997.09-2003.12 PhD, Chemistry, Univ. of Michigan at Ann Arbor

1993.09-1995.07 臺灣大學化學系

1989.09-1993.06 臺灣大學化學系學士




研究介紹 

Research Interest



研究主要是探討表界面間電移和能量傳遞的超快程🏃‍♂️,包括光致反、光催化、化學反等👨🏼,研究其反途徑與機理,以及生物酶蛋白的金屬氧化還原a8的功能結構🔘🍣。發展X射線譜學方法學(XASXESIXS)與實驗探測技術,研製高能量分辨X射線光譜儀(圖 1,2,3)。在同步施和X自由子激光裝置X,在原位反條件下,時間分辨技,配合第一原理算,表征反應位點結構行能源材料的機理研究。

目前在研項目主要包括三個方面:(1)利用pump-probe探測技術研究光催化反應的電荷轉移動力學(圖 4,5,6);(2)(光)電催化反應催化劑的製備👨‍👨‍👧、表征和機理研究(圖 7);(3)用於X射線光譜儀的元件和材料的製備研究(圖 8,9,10)。

  

圖 1👨🏻‍⚕️:研製的高能量分辨X射線光譜儀

  

圖 2:依托高能量分辨能譜儀發展的先進X射線譜學方法學

  

圖 3🫲🏻:多維超快X射線譜學



圖 4:利用超快光譜技術研究量子點表面缺陷對電子轉移過程影響🦶🏼。(a)泵浦探測技術原理示意圖;(b)(c)CdSe QDs的瞬態吸收光譜🔭。



圖 5:(a)(b)在酸處理前後,測試ZnO中的 Zn L-edge和 O K-edge的XAS👩🏼‍🍳,證明了ZnO經酸處理後氧空位增多🔠👇🏻;(c)通用同步加速器超快泵浦探測束示意圖。




圖 6:通過調控碳源和摻雜前驅體,合成具有UV- Visible波段的熒光發射的碳點。基於瞬態吸收光譜(TA),研究碳點的碳核態、表面缺陷態和分子態,在光催化體系下的電荷轉移動力學過程。


 

圖 7:采用電化學沉積的手段製備了高效能的電解水催化劑,利用XPS,XAS等手段證明了Fe原子對Ni原子的價態的調控,通過FTIR以及Raman光譜證明了羧酸自由基的存在,采用動力學同位素實驗證明在析氧反應中發生的質子耦合電子轉移過程🟧。




圖 8✪:利用激光直寫光刻和反應離子束刻蝕實現可見光波段的金剛石光柵製備,實現核心刻蝕工藝的突破。目前致力於金剛石離子束註入光刻的實現🏋🏼,實現高效率高準確度的金剛石光刻工藝🍤🌆。



圖 9🧜‍♂️🔑:將矽/鍺/石英晶片壓彎並粘接在玻璃基底上,保證曲率半徑和表面形貌滿足使用條件🧚。使用膠水粘合工藝,完成半徑1000mm彎晶單色器的製備,且表面RMS🥶、聚焦性能、曲率半徑等幾何面型參數與成品彎晶接近。


圖 10🕺:利用脈沖激光沉積技術(Pulsed Laser Deposition)在襯底上沉積BiFeO3 (BFO)薄膜,用XRD和RSM(Reciprocal Space Mapping),AFM技術來判斷薄膜生長的質量🧑🏻,並采用C-AFM(Conductive-AFM),PFM(Piezoresponse Force Microscopy)等方法來進行電學測試✮,同時結合課題組的XAS技術🧑🏼‍🌾🧏🏽‍♀️,研究BFO薄膜的晶體結構🔦,鐵電性以及反鐵磁性三者之間的耦合關系和其他獨特性質。左圖為PLD技術示意圖✂️☢️,右圖為經過氫氟酸酸洗後得到的具有原子臺階的SrTiO3襯底表面的AFM測試結果🤹🏽‍♂️。



45.   “Resonant X-ray emission spectroscopy from broadband stochastic pulses at an X-ray free electron laser”. Communications Chemistry2021. 4(1).

44.  “The five-analyzer point-to-point scanning crystal spectrometer at ESRF ID26”. Journal of Synchrotron Radiation2021. 28: p. 362-371.

43.  “Effect of 3d/4p Mixing on 1s2p Resonant Inelastic X-ray Scattering: Electronic Structure of Oxo-Bridged Iron Dimers”. Journal of the American Chemical Society2021. 143(12): p. 4569-4584.

42.  “Probing the Electronic Band Gap of Solid Hydrogen by Inelastic X-Ray Scattering up to 90 GPa”. Physical Review Letters2021. 126(3).

41.  “Efficient approaches to solutions of partition function for condensed matters”. Journal of Physics-Condensed Matter2021. 33(11).

40.  “Sulfur K beta X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds”. Physical Chemistry Chemical Physics2021. 23(8): p. 4500-4508.

39.  “The Limitations of 5f Delocalization and Dispersion”. Applied Sciences-Basel2021. 11(9).

38.  “Underlying simplicity of 5f unoccupied electronic structure”. Journal of Vacuum Science & Technology A2021. 39(4).

37.  “Which phase of Ta2O5 being of the largest dielectric constant”. Journal of the American Ceramic Society2021.

36.    “Femtosecond electronic structure response to high intensity XFEL pulses probed by iron X-ray emission spectroscopy”. Scientific Reports2020. 10(1).

35.    “A versatile Johansson-type tender x-ray emission spectrometer”. Review of Scientific Instruments2020. 91(3).

34.    “Towards the Quantification of 5f Delocalization”. Applied Sciences-Basel2020. 10(8).

33.    “EXAFS as a probe of actinide oxide formation in the tender X-ray regime”. Surface Science2020. 698.

32.    “Towards the Quantification of 5f Delocalization (vol 10, 2918, 2020)”. Applied Sciences-Basel2020. 10(12).

31.    “Ultrathin transmission-type bent crystals for XFEL spectral diagnostic”. in International Conference on Optoelectronic and Microelectronic Technology and Application2020. Nanjing, PEOPLES R CHINA.

30.    “A soft X-ray emission flat-field grating spectrometer for time-resolved spectroscopy”. in International Conference on Optoelectronic and Microelectronic Technology and Application2020. Nanjing, PEOPLES R CHINA.

29. “NpSe2: a binary chalcogenide containing modulated selenide chains and ambiguous-valent metal”, Angew. Chem. Int. Ed., 201958, 16130–16133.

28.   “Soft X-ray spectroscopy with Transition-Edge Sensors at Stanford Synchrotron Radiation Lightsource beamline 10-1”, Rev. Sci. Instrum.201990, 113101.

27.   “Comparison of Two Efficient Methods for Calculating Partition Functions”, Entropy201921, 1050.

26.   “Charge-Transfer-induced Interfacial Exchange Coupling at the Co/BiFeO3 Interface”, Phys. Rev. Appl.201912, 044010.

25.   “Diagram, Valence-to-Core, and Hypersatellite K beta X-ray Transitions in Metallic Chromium”, X-ray Spectrom.201948, 351–359.

24.   “Revisiting the Phase Transition of Magnetite under Pressure”, J. Phys. Chem. C2019123, 21114–21119.

23.   “What Retards the Response of Graphene based Gaseous Sensor”, Sens. Actuators A Phys.2019295, 188–192.

22.   “A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate”, Nanomaterials20199, 978.

21.   “Nature of Cobalt Species during the in situ Sulfurization of Co(Ni)Mo/Al2O3 Hydrodesulfurization Catalysts”, J. Synchrotron Rad.201926, 811–818.

20.   “A High-Throughput Energy-Dispersive Tender X-ray Spectrometer for Shot-to-Shot Sulfur Measurements”, J. Synchrotron Rad.201926, 629–634.

19.   “Separate measurement of the 5f5/2 and 5f7/2 unoccupied density of states of UO2”, J. Electron Spectrosc. Relat. Phenom., 2019232, 100–104.

18.   “Electronic Structure of Naturally Occurring Aromatic Carbon”, EnergyFuels., 201933, 2099–2105.

17.   “Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando X-ray Raman spectroscopy”, Carbon2019143, 371–377.

16.   “Operando Observation of Chemical Transformations of Iridium Oxide During Photoelectrochemical Water Oxidation”, ACS Appl. Energy Mat., 20192, 1371–1379.

15.   “Initial metal-metal bond breakage detected by fs X-ray scattering in the photolysis of Ru3(CO)12 in cyclohexane at 400 nm”, Photochem. Photobiol. Sci.201918, 319–327.

14.   “Carbon Core Electron Spectra of Polycyclic Aromatic Hydrocarbons”, J. Phys. Chem. A, 2018, 122, 5730–5734.

13.   “Highly Active Surface Structure in Nanosized Spinel Cobalt-based Oxides for Electrocatalytic Water Splitting”, J. Phys. Chem. C2018122, 14447–14458.

12.   “Surface- and Pressure-induced Bulk Kondo Breakdown in SmB6”, Phys. Rev. B201897, 235153.

11.   “Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide”, Phys. Rev. B201898, 045104.

10.   “Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials”, Nano Lett., 201818, 3241–3249.

9.      “L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems using a Transition-Edge-Sensor Array”, J. Chem. Phys., 201821, 214201.

8.      “Soft X-Ray Second Harmonic Generation as an Interfacial Probe”, Phys. Rev. Lett.2018120, 023901.

7.      “Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries”, Chem. Rev., 2017117, 13123–13186.

6.      “Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2’-bipyridine)2(CN)2]”, Struct. Dynamics20174, 044030.

5.      “An Oxygen-Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenum-based Layer for Overall Water Splitting”, Angew. Chem. Int. Ed.201756, 5780–5784.

4.      “Operando Investigation on Au-MnOx thin films with improved activity for the oxygen evolution reaction”, Electrochimica Acta2017230, 22–28.

3.      “Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)”, Sol. Energy Mater. Sol. Cells2017160, 390–397.

2.      “Charge and spin-state characterization of cobalt bis(o-dioxolene) valence tautomers using Co Kβ x-ray emission and L-edge x-ray absorption spectroscopies”, Inorg. Chem., 201756, 737–747.

1.      “Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substation”, Chem. Sci.20178, 515–523.

元春澤

副研究員

研究方向:光電催化反應動力學研究🙅🏿‍♂️🔺;電化學能源材料和金屬離子電池的研究

郵箱 Email⇾:yuanchz@shanghaitech.edu.cn

李林

副研究員

研究方向♙:染料🧕、催化劑和納米材料的合成表征與應用;利用X射線光譜研究人工光合作用催化劑工作機理和分子激發態動力學✯🚴🏼‍♀️。

郵箱 Email👴🏼:lilin1@shanghaitech.edu.cn

豆宏斌

2019級 研究生

研究方向👇🏿:量子點光催化析氫的超快過程探究

郵箱 Email🤏🏻:douhb@shanghaitech.edu.cn

楊智乞

2019級 研究生

研究方向:用於硬X射線實時監測的金剛石光柵的製備研究

郵箱 Email:yangzhiq@shanghaitech.edu.cn

張繼豪

2020級 研究生

研究方向:利用泵浦探測手段研究基於碳量子點的光催化反應的電荷轉移動力學。

郵箱 Email🚞🏌🏽‍♀️:zhangjh5@shanghaitech.edu.cn

曾暄琦

2020級 研究生

研究方向:x射線熒光光譜儀中彎晶的鍵合與測試🧑🏼‍🔧。

郵箱 Email:zengxq@shanghaitech.edu.cn

李郭琦

2020級 研究生

研究方向👩🏻‍🍼📕:電催化析氧反應催化劑的研究

郵箱 Email🙆🏻:ligq1@shanghaitech.edu.cn

張大威

2020級 研究生

研究方向:光譜儀核心元件彎晶單色器的低溫製備工藝流程設計以及X射線光譜的大數據算法分析🧷。

郵箱 Email:zhangdw@shanghaitech.edu.cn

孫興瑞

2020級 研究生

研究方向🧑🏽‍🎄✬:BiFeO3 (BFO)薄膜的製備、表征及性能研究

郵箱 Email:sunxr@shanghaitech.edu.cn




























a8体育专业提供🤸:a8体育👱🏽、a8a8体育官网等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流〽️,a8体育欢迎您。 a8体育官網xml地圖